Indicator name	Index of non-sustainable water use	
High	Moderate Low Little or no use Adequate supply	
Prepared by	Water Systems Analysis Group, University of New Hampshire (UNH)	
Example	WWDR2, Section 1, Global Map 1	
Rationale	Comparison of total and agricultural water demands to renewable water supply, indicating areas where non-sustainable practices may be occurring.	
Position in DPSIR chain	Driving forces, Pressure, State	
Definition of indicator	Renewable freshwater resources (streamflow) minus geospatially distributed human water demand.	
Underlying definitions and	The indicator is based on the following definitions (all on a per grid cell basis):	
concepts	• Agricultural Water Demand: Volume of water required for agricultural use.	
	• Total Water Demand: Sum of Domestic. Industrial and Agricultural (DIA)	
	water use.	
	Renewable Freshwater Resources: Volume of water supply (Q) available.	
Specification of	Population per grid cell	
determinants needed	Per capita country or sub national level domestic water demand	
	Per capita country or sub national level industrial water demand	
	Irrigated land extent per grid cell	
	Country or sub national level agricultural water demand (irrigated water use)	
	Digitized, topological river network	
Commentation.	Gridded discharge fields (volume of renewable freshwater per grid cell)	
Computation	I ne indicator is computed as:	
	O DIA or O A	
	Where D = domestic water demand (km^3/vr) : I = industrial water demand (km^3/vr) :	
	A = agricultural water demand (km^3/yr) ; and Q = water supply (km^3/yr) .	
Units of measurements	Volume / time (i.e., cubic kilometers per year)	
Data sources, availability	All data for this indicator is available from the Water Systems Analysis Group at	
and quality	University of New Hampshire: http://wwdrii.sr.unh.edu/download.html (Accessed	
	3 March 2009)	
Scale of application	Local for basins exceeding 25,000 km ² (within a city or community); regional	

	(within a sub-national region); national (for a country); international (across
Construction	several countries or globally).
Geographical coverage	Global, gridded dataset at 30-minute grid cell resolution
	Africa, gridded dataset at 6-minute grid cell resolution
Interpretation	This indicator provides a measure of the human water demand in excess of natural
	water supply (local runoff plus river flow). Areas with high water overuse tend to
	occur in regions that are highly dependent on irrigated agriculture, such as the
	Indo-Gangetic Plain in South Asia, the North China Plain and the High Plains in
	North America. Urban concentration of water demands adds a highly localized
	dimension to these broader geographic trends. These areas are dependent on
	infrastructure that transports water over long distances (i.e., pipelines and canals)
	or on the mining of groundwater reserves, a practice that is not sustainable over the
	long-term.
Linkage with other	This indicator represents one in a series of indicators dealing with water pressures
indicators	on available resources. Other indicators in this venue are:
	Domestic Water Demand
	Industrial Water Demand
	Agricultural Water Demand
	Relative Water Stress Index
	Water Reuse Index
Alternative methods and	This indicator is currently based on country level estimates of water demand and
definitions	can be improved by using sub-national (county/province) water demand statistics.
	Higher quality data on the extent of irrigated areas would also increase the quality
	of this indicator.
Related indicator sets	NA
Sources of further	Charles J. Vörösmarty, Pamela Green, Joseph Salisbury, and Richard B. Lammers
information	Global water resources: Vulnerability from climate change and population growth.
	Science 289: 284-288 (in Reports).
	Charles J. Vörösmarty, Ellen M. Douglas, Pamela A. Green, and Carmen Revenga.
	Geospatial Indicators of Emerging Water Stress: An Application to Africa, Ambio,
	34 (3): 230-236, 2005.
	Vörösmarty, C.J., C. Leveque, C. Revenga (Convening Lead Authors)
	Coordinating Lead Authors: Chris Caudill, John Chilton, Ellen M. Douglas,
	Michel Meybeck, Daniel Prager, 2005b. Chapter 7: Fresh Water. In: Millennium
	Ecosystem Assessment, Volume 1: Conditions and Trends Working Group
	Report. Island Press. In press.
Involved agencies	Water Systems Analysis Group, University of New Hampshire
	(http://www.wsag.unh.edu/)
	Millennium Ecosystem Assessment http://www.maweb.org (Accessed 3 March
	2009)
	World Resource Institute http://www.wri.org (Accessed 3 March 2009)